Structural basis of damage recognition by thymine DNA glycosylase: Key roles for N-terminal residues
نویسندگان
چکیده
Thymine DNA Glycosylase (TDG) is a base excision repair enzyme functioning in DNA repair and epigenetic regulation. TDG removes thymine from mutagenic G·T mispairs arising from deamination of 5-methylcytosine (mC), and it processes other deamination-derived lesions including uracil (U). Essential for DNA demethylation, TDG excises 5-formylcytosine and 5-carboxylcytosine, derivatives of mC generated by Tet (ten-eleven translocation) enzymes. Here, we report structural and functional studies of TDG82-308, a new construct containing 29 more N-terminal residues than TDG111-308, the construct used for previous structures of DNA-bound TDG. Crystal structures and NMR experiments demonstrate that most of these N-terminal residues are disordered, for substrate- or product-bound TDG82-308 Nevertheless, G·T substrate affinity and glycosylase activity of TDG82-308 greatly exceeds that of TDG111-308 and is equivalent to full-length TDG. We report the first high-resolution structures of TDG in an enzyme-substrate complex, for G·U bound to TDG82-308 (1.54 Å) and TDG111-308 (1.71 Å), revealing new enzyme-substrate contacts, direct and water-mediated. We also report a structure of the TDG82-308 product complex (1.70 Å). TDG82-308 forms unique enzyme-DNA interactions, supporting its value for structure-function studies. The results advance understanding of how TDG recognizes and removes modified bases from DNA, particularly those resulting from deamination.
منابع مشابه
5-Hydroxy-5-methylhydantoin DNA lesion, a molecular trap for DNA glycosylases
DNA base-damage recognition in the base excision repair (BER) is a process operating on a wide variety of alkylated, oxidized and degraded bases. DNA glycosylases are the key enzymes which initiate the BER pathway by recognizing and excising the base damages guiding the damaged DNA through repair synthesis. We report here biochemical and structural evidence for the irreversible entrapment of DN...
متن کاملMutational analysis of the damage-recognition and catalytic mechanism of human SMUG1 DNA glycosylase.
Single-strand selective monofunctional uracil-DNA glycosylase (SMUG1), previously thought to be a backup enzyme for uracil-DNA glycosylase, has recently been shown to excise 5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU) and 5-formyluracil (fU) bearing an oxidized group at ring C5 as well as an uracil. In the present study, we used site-directed mutagenesis to construct a series of mutants ...
متن کاملExcision of thymine and 5-hydroxymethyluracil by the MBD4 DNA glycosylase domain: structural basis and implications for active DNA demethylation
The mammalian DNA glycosylase--methyl-CpG binding domain protein 4 (MBD4)--is involved in active DNA demethylation via the base excision repair pathway. MBD4 contains an N-terminal MBD and a C-terminal DNA glycosylase domain. MBD4 can excise the mismatched base paired with a guanine (G:X), where X is uracil, thymine or 5-hydroxymethyluracil (5hmU). These are, respectively, the deamination produ...
متن کاملBiochemical and structural characterization of the glycosylase domain of MBD4 bound to thymine and 5-hydroxymethyuracil-containing DNA
Active DNA demethylation in mammals occurs via hydroxylation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the ten-eleven translocation family of proteins (TETs). 5hmC residues in DNA can be further oxidized by TETs to 5-carboxylcytosines and/or deaminated by the Activation Induced Deaminase/Apolipoprotein B mRNA-editing enzyme complex family proteins to 5-hydromethyluracil (5hmU). E...
متن کاملOpposing regulatory roles of phosphorylation and acetylation in DNA mispair processing by thymine DNA glycosylase
CpG dinucleotides are mutational hotspots associated with cancer and genetic diseases. Thymine DNA glycosylase (TDG) plays an integral role in CpG maintenance by excising mispaired thymine and uracil in a CpG context and also participates in transcriptional regulation via gene-specific CpG demethylation and functional interactions with the transcription machinery. Here, we report that protein k...
متن کامل